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Abstract 

The optimum s-gradient method for minimizing a 

positive definite quadratic function f(x) on E 

has long been known to converge for s > 1 . For 

these £ the author studies the directions from 

which the iterates x.  approach their limit, and 

extends to s > 1 a theory proved by Akaike for 

s = 1 . It is shown that f (x. ) can never converge 

to its minimum value faster than linearly, except in 

degenerate cases where it attains the minimum in one 

step. 
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1.    Introduction and Summary. 

To minimize a smooth real-valued function    f(x)    of    n    real vari- 

ables,  the optimum s-gradient method has been described by Birraan [3], 

Faddeev and Faddeeva [5], Khabaza [8], and others.    We here consider the 

model function   f(x) = ^x Ax,    where   A   is a positive definite matrix. 

Then each iterate   x      is equal to its error.    The convergence of the 

method was proved long ago--see {2.1k)—and the question now under study 

is to find the asymptotic manner in which the iterates    x,   -» 6,    the null 

vector. 

For    8 = 1   it was conjectured by Forsythe and Motzkin [7] and 

proved by Akaike [l]--see  (4.12)—that the iterates    x,     converge to   6 

by asymptotically alternating between two directions--the "cage" of 

Stiefel LIO].    Thus the convergence of    f(x.)    to   0    for    s = 1   Is 

known to be linaar, and no faster than linear, for any start    x.    that 

i is not en eigenvector.    Moreover,   if coordinates are chosen so that   A 

1: 
L 
I 
I 
I 

is a diagonal matrix, then the two asymptotic directions have oaly two 

nonzero components. Finally, any direction with only two nonzero com- 

ponents is invariant under two steps of the optimum 1-gradient method. 

In the present paper the author has extended most of the known 

results to arbitrary   s > 1 .    The main result (5.8)  shows that the 

directions of the even Iterates   x«.     have as a limit set ': continuum 

R    (which might be a single direction).    Moreover,  each direction of   R 

is invariant under two stjps of the optimum s-gradlent method.    Let   A 

be a diagonal matrix.    It is then shown in (>.10) that In the optimum 

s-gradlent process   f(xk) converges to   0   no faster than linearly for 

any initial vector   x.   with at least    s + l   nonzero components. 
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Theorem (k.j)  shows that all vectors of   R   have between    s + 1    and   2s 

nonzero coordinates,  inclusive.    Theorem (^.8) says that any direction 

with    s + 1    nonzero components is invariant under two steps of the method, 

for any    s  .    Examples are shown in Sec. k of directions with this invari- 

ance and with as many as    2s    nonzero components. 

Experimental evidence from computer runs for    s = 2    suggests 

strongly that    R    is always a single point, just it has been proved to 

be for    s = 1  .    The author conjectures without proof that    R    is a 

single point for all    s,    so that    x,   -> 0    in an alternating manner 

completely analogous to the case with    s = 1 . 

The author is aware that for minimizing quadratic functions    f(x) 

in practice,  the conjugate-gradient method of Hestenes and Stiefel (see 

[5]) may usually be expected to be superior to the optimum s-gradient 

methods,  although Khabaza [8] claims superiority for the 3-gradient 

method in some cases.    For nonquadratic functions    f(x) the relative 

merits of the methods are less clear.    The purpose of the present inves- 

tigation was the intellectual one of trying to understand the asymptotic 

behavior of the various gradient methods for quadratic functions.    The 

author expects that this information may have some useful application 

to the minimization of general smooth functions    f (x)   . 



2.    The Optimum s-gradlent Method for Quadratic Functions. 

Let    f(x)    be rral for all    x    in real euclidean n-space   En .    Let 

f (x)    assume a minimum value for a unique   x,    which can be taken as    6, 

the origin of   E ,    without loss of generality in the analysis.    The 

advantage of using   6    is that the iterate   x      is then also its own 

error    x.   - 0   as a minimizing vector.   We wish to analyze certain 

asymptotic properties of a class of optimum gradient methods for finding 

the minimum of   f(x)   . 

The simplest    f   to analyze is the quadratic function 

(2.1) f(x)  =ixTAx, 

where    A    is a symmetric, positive definite,  nonderogatory matrix of 

order    n .    Moreover,   (2.1)  represents the local behavior at   6   of 

f(x)   - f(e)    for most sufficiently smooth functions    f .    The author 

conjectures that the theorems proved below for a quadratic function 

apply essentially also to any sufficiently smooth function   f   which 

is locally like (2.1).    In this paper only quadratic functions will be 

studied.    See Daniel [k] for an investigation comparing gradient methods 

for quadratic and nonquadratic functions in Hilbert space. 

In the various gradient methods one starts with an arbitrary 

vector    x0,    and computes a sequence    {x^}    converging to    6 .    We 

assume all arithmetic to be exact,  and round-off error is not considered 

in this paper. 

Let    z.   = grad f(x.)   = Ax      denote the gradient of    f   at   x^  . 

In the optimum 1-gradient method [5],    xk+1    is taken to be the unique 
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point on the line   1^ = [xk + a Axk  j - • < a < •)    for which   F(a) » 

f(x.   + CtAx. )    is a minimum.     (The existence and uniqueness of   x    . 

result from the easily proved fact that   F(a)    is a quadratic function 

of   a   with   F"(a) > 0 .)    The line    L.    through   x,     is called the 

line of steepest descent of   f(x)    at   x.   . 

For    x € L , grad f(x) = A(xk 
+ a AxJ  *= AXj, + a A x.   .    We there- 

fore consider the 2-dimensional plane through   x , 

L2 = {xk + ^Ax^ + a2A2xk :-•< ^ <•,--< a2 < •), 

and call it the 2-plane of steepest descent of   f (x)    at   x.   . 

By extension, for any integer    s    (l < s < n)    let 

s 

I 
i=l 

s . 
L
s = txk 

+   I  ai A xk : - ^ ^ ^ < - (all    i )} 

be the s-dimensional plane of steepest descent of   f (x)    at   x.   .    Since 

A    is not derogatory,    Ax ,   ..., Ax     are linearly independent, provided 

xn    is a vector whose minimum polynomial is of degree    n .    In that case 

L      is the whole space   E    . n n 

In the optimum s-gradient method [5] for minimizing the quadratic 

function    f   of (2.1), the point    x    ..    is defined to be the unique point 

y    in   L      for which   f(y)    is a minimum   (k = 0,  1,   ...)   .    (Again 
s 

existence and uniqueness follow from the positive definiteness of   A .) 

It is the optimum s-gradient methods that we shall analyze in this paper. 

We now give two representations of the minimizing    [a.}   which are 

useful in the analysis.    Actual computing algorithms for the optimum 

 :  '—■^—■— 
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8-gradient method often proceed differently,  and find   xk+1   by taking 

s    steps of the conjugate gradient method,  starting from   x.   .    See [5]. 

We concentrate on the gradients    z.   = Ax    . 

First representation 

Let 

.s x,..,   = x.   + 7,Ax,  +  ... + 7 A x, to-1        k      '1   k 's      k 

Then the gradient of   f(x)    at   x^,    is 

,s 
(2.2) z^,   = z,   + /TAZ,   +  ... + 7 A z. v       ' k+1        k        1   k 's      k 

Since   x^,    minimizes    f (y)    for   y € L ,    the vector   z   ..    must be 

orthogonal to   L    .    For this it is necessary and sufficient that    z 

s-1 be orthogonal to    z., Az.,   ..., A     z,   .    Then    7^   ..., 7 are deter- 

mined by the    s    conditions 

I (v Vi'= (v V + 'I'V V+ •••+ ?s(V A'Iit
) "0 

T    T 
Here (u, v) = u v + v u denotes the inner product of two column vectors. 

Since (A z, A^z) = (z, A1^^) = z .'^^z, we may write the above equations 

as 

'*~***,*****^^Mtem&W'üiiigpHui 



T T T s 
z,   z.   + 7. z.   Az,  + ... + y    z,   A z. «0 

k   k '1    k     k s    k        k 

z.   Az.   + 7, z.   A z.   +  ... + >    z.   A      z,     «0 k     k '1    k       k 's    k k 

(2.5)       < 
T.s-l      , T.s T.2s-1 

zkA     zk+ h\A\* ••• +'s zkA       zk,,0    ' 

,S"1 
As long as    z,, Az.,   ..., A     z      are linearly independent,  the 

equations (2.3) determine the minimizing    7-,   ...,  7     uniquely. 
X 6 

Second representation 

Let   q(t)=t   +ß    .t'   + ... + p     denote any monic polynomial 
S SMX u 

of degree    s,    with   ß    ^ 0  .    Then 

s-1 
S^'k = A zk + ßs-iA " zk + *•• +ßoV 

and 

(2.10 
%M\ 1     .8 P. 

TöT = ßl A zk T T 
-1   .8-1 

= r- A z,   + -r— A      z,   +   ... + Z,    . 

Comparing (2.1+) with (2.2), we see that we can write 

(2.5) 
PS(A) 

zk+i= PTöT 
zk' 

s 

where    p (t)    is the particular polynomial s 

(2.6) /a.\        J-S  _.      8-1 .8-1   . .'1.1 p   (t)   =  t     + t        + ...   +    t  +    
*S 7 7 7 

'8 '8 'S 

Now   p (t)    is a certain orthogonal polynomial.    Without loss of s 

generality assume    A    to be the diagonal matrix 

■**■ 

■ - v , ^. 
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(2.7) A - diagC^,   ..., \n) 

O 
O 

where   0<^1<^2< ... < \     are its eigenvalues (distinct because    A 

is not derogatory). 

(2.8)    Definition.    In the coordinate system corresponding to (2.7),  let 

T 
the nonzero vector    z    be    (£.,   ••.,£)     •    Let orthogonality of two 

polynomials    p(t),    q(t)    (relative to    z ) be defined by 

<p(t),   q(t)> =   £   p(Xi)q(Xi)Ci =0  . 
i=l 

(2.9) Definition. Let P (t; z) ■ t + ... be the unique monic poly- s 

nomial of degree    s    that, relative to    z,     is orthogonal in the sense 

of    (2.8) to all polynomitls of degree   < s-1 . 

Note that    P_(t; z)    depends only on the direction of   z,    and not s 

its magnitude.    I.e.,    P (t; z)  = P (t; az),    for all real   a / 0 . 
s s 

(2.10) Theorem.    The polynomial   p (t)    of    (2.5),   (2.6) is the ortho- 

gonal polynomial    P (t; z.)    defined in (2.9). 

We shall not pnve (2.10).    For a related proof see, for example, 

p. 3^9 of [5].    The basic reason for (2.10)   is the isomorphism, well 

expounded by Stiefel [11], between orthogonality of the polynomials 

 l^M^^M. !*'*to.' fs3      * *' 



p(t), q(t) in the sense of (2.8) and geometric orthogonality of the 

vectors p(A)z, q(A)z in E. . That is. 

<p(t), q(t)> n (p(A)z, q(A)z) . 

Hence the conditions (2.3) asserting the orthogonality of the vector 

z, _,.  «= P (A; z,) z,   / P (0; z,) to z,, Az., A z,,   .... As" z,    are k+1       s k'    k '     s k k'      k'        k'        ' k 

equivalently asserting the orthogonality of the polynomial   P-(t; z. ) 

2 s-1 to the polynomials    1, t, t ,   ..., t 

In summary   z    1    is uniquely determined from   z     by the formula 

P8(A; z ) 
(2-u) Vi = 77—T zk ' 

^0'' ^ 

Moreover, 

Ps(A; Zk) 

(2-12) Vl s P (0; zj xk 

Relation (2.12)  is the basis for a proof by Binnan [J] that in the 

optimum s-gradient method    f(x.)    converges to    0   linearly, or faster. 

To be precise,  let    o = (\    + ^^n ' ^l)'    '    Let    T8^    denote ■the 

Chebyshev polynomial on    [-1,  1],    normalized so that   max , < + < l^s^^' 

1 .    Let 

Then   0,(0)  » T (o) > 1,    and    jft (t)| < 1,    for   \, < t < \    ,    It is 

^.r>'.i£'V:   ■■ VMS 



known that 

Tg(o) 
(O^VTH)

8
. (C-^1)\ l t 

Birman's proof goes as follows: 

/P (A 

/Q8(A)  \ 
< f Q (o) xk| * because ?

s^
t'> z

k)   is the Poly- 
/        nomial that minimizes    f(xk+i) 

1 xA (A) A ft    (A)  xv 

(2.13) 

[a (o)]2   k  8     ^   8 k 

1    p I MftJ^)!2 [Si00!2 

[Q (0)]2 itl    i    s    i i 

n 

[QjO)]2 itl    i    i 

[Ts(a)]2        k 

Hence 

(2.14) /fCT<—i-^/füTT, 
k        [T  (o)]k 0 

5 

proving the convergence of    f(x,)    to   0    to be linear or faster. 

(2.15)    Definition.    For   a = 0,    + 1> + 2,   ...,    let the moments   u 

T 
of    z = (C^  •••»  ^n)      be defined by 

****«■■ 



n 
^a =   £   xi ^i • 

i=l 1 

(2.16)    Theorem.    Fix    s > 1 .    Except for a constant factor, the ortho- 

gonal polynomial   P (t; z)    of    (2.9) can be expressed by the determinant 

(2.17) Ps(t; 2) 

^1 

^2 

••• Vl   1 

^s ^s+l ^s-1 * 

The proof is left to the reader. 

In the next theorem we give an explicit representation for the ratio 

f(x, ,,)/if{x )    in terms of the moments of z, . v k+1 '   k k 

(2.l8) Theorem. Fix s>l . Let x, be any vector in the optimum 

s-gradient method, and let u  be the moments defined by (2.15) for 

the gradient vector z = Ax . Then 

^-1 ^0 ^1 •'• ^s-l 

^0  ^2 '•• ^s 

^Vl5  ^s-1 ^s ^1    ^2s-l 
T^T ^-1 M.l 

where   M ,    is^ the minor determinant of   11 1    in the above determinant; 

10 



M -1 

^2       ' * ^s 

•      •       •      • 
" ^s+l 

^ ^sfl ' '•   ^28-1 

T T  -1 
Proof.    We have    Vfi*^  ' ^^ = Z

K 
A    zk = ^-1 '    To simPlify 

T T 
the notation,  let   z^ = (C^   ...,  Cn)      and    z^+l = C^',   ...,  Cn')     • 

Then 

Ps^i; ^ 
V  = P (0; zj    ^ 

by (2.11) 

Ps(Xi> ^ 
^i' 

where we use the representation (2.1?)  for    Ps(t; zk)   .    Then 

2   1   .2 
(2.i9) 2f(vi) =ViTA*i = ;f2 £/p

s
(Vz

k
)] r^i 

n 1        wm Pe^-i '   zv'      o 

M_J i=l    S    1      K Ki 1 

Now   P (t; z. )    is orthogonal in the sense of (2.8)  to all polynomials 
S K 

of degree < s - 1 . Hence the only term of P (X.; z
k)Ai that con- 

tributes anything nonzero to the sum (2.19) is the term (-1) M ,/X. . 

Hence 

*f(vi> = ^t, psai; ^ ^ •1 i=l 

11 
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M-l    itl 

^o^i    ••' 
2 

^1^2       •'•  ^s Ci 

,2 ,s-l 

^0 ^1 '•• ^s-l    ^-1 

(-il! 
M.i 

^1^2 •••^s        ^o 

^s ^s+l •'• ^s-l^s-l 

Dividing   2f(x    ,)    by   2f(x )  = \i 1     and rearranging the columns of the 

last determinant proves theorem (2.l8). 

(2.20)    Corollary.    In the notation of theorem (2.18),  for    s = 1, 

(2.21) ^W      ^-1 " ^C 
T^y ^ -i 

If    n = 2    and    s = 1,    then 

(2.22) 
(x^i+x^) (x^i+x^g) 

2        2,    v = c    = c  (xk)   . 

Proof. The second expression comes from the first by using (2.15) 

T 
and (2.21), where z = (£., £ ) , with some algebraic manipulation. 

(2.23) Corollary. The expression (2.22) for f(xj,+1)/
f(XJ li unchanged, 

T T 
if (C^ Sg)  is changed to (^ -t,^     . 

12 
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The inequality (2.15) yields an upper bound for the expression in 

(2.18).    We may state this result in the form of the following inequality, 

valid for    s = 1, 2,   ...: 

(2.2»0 

^-1    ^0 ^1 

^0      ^1 ^2 

s-1 

•       *       • 

Vl^s Vl  ••• ^2s-lJ 

^1X 

^ ... ns 

•      •      •      • 
S'            _ 

^s   '••  ^s-1 

<        ] 

^n 11 
Lsl X  -X, , n    IJ 

This is essentially the inequality of Meinardus [8a], who derived it by 

the same argument for a slightly different iteration in which ||x|| is 

minimized instead of    f(x)   . 

The special case for    s = 1, 

(2.25) 
^-1^0 /   1 •                     > 1             S      m 

^0    ^1 I                                1 'x +xn, _n 11 
klU  -X. , n    1 

Vxii 

is a well-known inequality of Kantorovich; see (8) on p. ^10 of [5]. 

It was stated by Birman [5] that the bound (2.14) is sharp, in the 

sense that for each s and each given V., ^ (s < a), one can find 

A and x  so that (2.14) is an equality for all k . This is done by 

finding a set of X. and 5^    so that the shifted Chebyshev polyno- 

mial Q (t)  is (up to 3 scalar factor) identical with P (t;zn) and 
S 6     w 

so that IQ, (>0 I = 1 for each eigenvalue X. . This is known to be 
S  X X 

possible because the Chebyshev polynomials, like cosines, are orthogonal 

with respect to summation over certain points. 

15 
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However,  Birman did not investigate the actual manner or rate of 

convergence of    f(x, ) to    0    in the optimum s-gradient method for a 

general given   A    and   x.  .    He left open the question of whether the 

convergence of    f(x )    to    0   might actually be faster than linear in 

certain nontrivial cases. 

For    s  = 1    Forsythe and Motzkin [?]  conjectured that if    §!  '5 

^0,    then    5jk'   = o(||x. ||),    as    k-»-,     for all    i   with    l<i<n. 

In words,    x.   -*   6    asymptotically in the 2-space    n1        spanned by the 

eigenvectors belonging to    K    and    \    ,    The conjecture was proved by 

Forsythe and Motzkin (unpublished)  only for    n = 5   •    Akaike  [l]  proved 

the conjecture for arbitrary    n  .     In an unpublished manuscript Arms [2] 

had found a similar proof.    We give a proof in 0+.12)  as a consequence 

of our result  (5.8)  for the s-gradient method. 

Suppose the optimum l-gradient process is performed entirely in the 

two-dimensional space   IU       .    Then,   if    X-€it.        and    X-    is not an r l,n 0    l,n 0 

eigenvector,   it is easy to prove that: 

(i)    xn,  x ,  Xi,   ...  are all collinear vectors,  and that 

x-, x,, Xc,   ...  are also collinear in another direction.    Furthermore, 

2 2 2 
x2k+2 = C x2k    and    x2k+l = C ^k-l'     for a11    k *    Here    c      is given 

by (2.22).    The basic reason why these vectors are collinear is that 

tne gradients    z    ..    and    z     must always be perpendicular in any optimum 

gradient method. 

 2. 
(ii) Moreover, for each k = 0, 1, ..., f(x.+1) = c f(xk) • This 

is an immediate consequence of Corollary (?.25). Hence f(x.) ^ 0 in 

a strictly linear fashion, like the k-th term of a convergent geometric 

series, even though the vectors x  alternate between two fixed directions. 

ik 



1. 
1. 

It is a consequence of the Forsythe-Motzkin-Arms-Akaike result on 

the manner of convergence of   x      to    0    in   E      for    s = L   that the 

iteration behaves asymptotically,  as    k -• •,    as though it were entirely 

in the two-space    n,       .    The vectors    x.     behave ultimately as though 

they had resulted from an iteration started with some    x*    in    nn 0 l,n 

In particular, we find that    f(x, )  ^ 0    linearly,   in the sense that 

lim   l^Vll = c2(x*)   . 
k - •    f (x, ) k 

However,  the vector   x      is an extremely complex function of    x    - 

Till now, the asymptotic nature of the optimum s-gradient method 

has not been described for s > 1 . This problem, posed on p. 31h of 

Forsythe [6],  is studied in the next section. 

15 



J.    Asymptotic Behavior of the s-gradlent Method. 

We are still assuming   A    to have distinct positive eigenvalues 

\. < X- < ... < X    .    Fix any    s   with    1 < s  .    Motivated by (2.1l) 

and by Akaike's approach [1] for    s = 1,    we shall consider the trans- 

formation 

(5.1) w1  = P (A; w) w . s 

Here w ^ 6 and P (t; w) = t + ... is the orthogonal polynomial 
s 

defined in  (2.9).    Let 

(3.2) <P(w)   = 
Ml2      ||P (A; w)||2 

wi 1W 

where    ||u||    denotes the euclidean length of   u . 

Similarly,  if   w'  ^ 9,    let    w" = ?AA', W
1
) W',     so that s 

«PCWO = 
w H!|2 

I w .112 ' 

The following theorem is of basic importance to our analysis of the 

asymptotic behavior of the s-gradient method. 

(5.5) Theorem. Let i be the angle between w and w" . For enj^ w 

such that w" ^6,    we have 

«P(w) = 
w .||2 ...||2 w' 

= cos t 
w Iw'||2-||w'||2 

= (p(w'), 

16 
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and there Is equality if and only if   w" = cw   for some scalar   c > 0 . 

Proof.    By the Cauchy-Schwarz inequality and the definition of   t* 

(3 A) (wV)2 = cos^lMI2 l|w"|l2 < IMI2 M2, 

with equality if and only if w = cw", for c ^ 0 . 

Now 

Ml2 - wV = 1|P (A; W) W|1
2
 - wTP (A; w»)  PjA; w) w 

S o o 

= wT[Pc(A; w)]2 w - wTPQ(A; w') PR(A; W) W 
S Bo 

« wTP (A; w)  {P (A; w)  - PjA; w')) w 
So o 

= wTP (A; w) D(A) w s 

= o, 

hy (2.3), because   D(t)     is a polynomial of degree at most    s - 1, 

since the leading terms    t      cancel.    Hence    Ijw'll    = w w",    whence 

(5.5) M\k = (wV)2 . 

Combining (3.,0 with (3.5)# we have 

jw'H4 = cos2tl|w|l2 ||w112 < Hwll2 ||w112, 

with equality if and only if   w" = cw .    That    c > 0    follows from the 

fact that   w w" =   w'|    > 0  .    This proves theorem (5.3). 

17 



(3.6)    Definition.    Fix    s    with     1 < s < n - 1 .      Fix a euclidean 

coordinate system in   E      so   A   takes the form (2.7).    Let    I   be the 

unit sphere in   E    .    Define    Z* c I   to consist of all unit vectors   y 

with at least    s + 1   nonzero components.    We define a transformation 

T:    E* - Z*,    as follows:    For each   y   in    2*,    let    y'  = Ty = w/l|w||, 

where   w = P (A; y) y .     (That   w ^ 0   and   y* € Z     are proved in 
s 

theorem (5.1).) 

(5.7)    Definition.    By a continuum we mean a closed connected set in   E , 

with the understanding that a  single point is a continuum. 

(5.8)    Theorem.    Fix    s   with    1 < s < n - 1 .    Let    yQ =(TK    ,   ..., TT ') 

be any vector in   Z     with   TI .      ^ 0    (i = 1,   ...,  n)   .    For   k = 0,  1,   ..., 

define    y.   ,  = Ty.;    where    T   was defined in (5.6).    Then the set of 

limit points of the sequence    {yp.   : k = 0,  i, 2,   ...)    of normalized 

gradients is a^ continuum   R c Z    .    Moreover,  for any point   r   in   R, 

we have    r = T r = T(Tr)   . 

Proof.    Let   w0 = y0  .    For   k = 0, 1,   ...,    let   wk+1 = Ps(A; yk) wk, 

where    P (t; y)    was defined in (2.9)-    It is easily shown that   y.   = 
S K 

w./||w U,    for all   k .    Since    n > s + 1   components of   w     are nonzero, 
K K. "^ U 

it follows from theorem (5-1) that at least s + 1 components of w, 

are nonzero for k = 1, 2, ... . Hence no w. = 6 . 

(k^      (k) T 
Let w= (a: ',..., u)w) . By theorem (5-5)» 

(p(w0) < 9^) < ••• <9(wk) < 
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But for each k the s zeros of P (t; w ) lie in the interval 
S K 

(\i \)  •    Hence    |P8(t; wk) 1 < (\n - \1)8,    for   \<t< \n,    and 

llw^.f    IIP.U; wk)||2 

so 

i^l     s    1      K 1 

" t t^'i2 

i-1     1 

< (^   - K)Sf    for all   k . - v n       1'  ' 

As a monotone bounded sequence,    {<p(w.)}    has a limit   L .    Hence 

(3.9) 'K+l^  " ^^ " 0 (as   k - « ). 

But, by theorem (j.j). 

llw     ||2 llw     I!2 

■*      m^ ^      " kfg" " k+l" 

(3.10) 

= ii n2 [1 " C08  V' 

where    f.     is the angle between   w,     and   w^^p .    Then, by (3-9)* 

cos t.  - 1,    and    ^ "* 0,    as    k - • .    (Since    c > 0    in (3.3)>    ♦v ^ "  "^ 

Now consider the set    Y   of unit vectors    {yp.   : k = 0,  1, 2,   ...}  . 

As an infinite subset of the compact unit sphere    £,    {yoiJ    has limit 

points; let   R   be Jjhe set of all limit points of   Y .    Since   t,, "* 0; 
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as    k - •,    we have    llyoj-p " JW' " 0,    as    k "* * •    Then# a8 Ostrowski 

shows on p. 203 of [9]» the set   R   must be a continuum in the sense of 

(5.7). 

Let   r   be any point of   R .    Then there is a subsequence    {y0.   ) 
1 

converging to r . Since ||y2. +2 - y2. || "• 0, we have also that 

2 i      i 

y^k +2 = T y2k " r * ^U* T is a continuous transformation. Hence 

2       2 2 2 
T y0, -• T r, and T r = r . Since T r = r, we see from theorem (5«l) 

i 
that r € 2 . Hence RC Z . This completes the proof of theorem (5«8)' 

The author has programmed a number of test cases with 8=2, to 

investigate the nature of the set R . In every case, R appeared to 

be a single point. The author conjectures that R is always a single 

point in theorem (3.8). So far, this has been proved only for s " 1, 

and we give the proof in (U.12). 

The following theorem shows one way in which one might be able to 

prove that R consists always of a single point. 

(3.11) Theorem. Suppose in the proof of theorem (3«8) that 9(w.) 

were to converge to L so rapidly that, for some o < 1. 

(3.12) 0<<p(wk+1) - (p(wk) < or[(p(wk) - (pCw^],    for all k . 

Then R would consist of a  single point. 

Proof. If (3.12) held, then the following infinite series would be 

convergent: 
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(3.13) J][q)(w      )  - <p(w )]* < - 

as is  seen from (5.12),  by the ratio test.     It  is shown in (3'10)  that 

(3.HO ^K+i^ ■ ^k^    sin l^k'' as    k - •, 

where    *,     is the angle between the vectors    w,     and    w. ir, .    Then,   from Tk ^ k k+2 ' 

(5.15)  and (3.1^), we would have 

(3.15) £ltkl<-. 

Now,   let   y,   = wk/||w ||    be the u..it vector in the direction of   w    .    It 

would follow from (3-15)  that 

l lly. 
k=0 

2k+2 " y2k" < *, 

whence 

1 

(3.16) I*      ^yPk+?   "   yPl<-' 
k=0 

would be an absolutely convergent series of vectors.    Since 

k-1 
y2k  .*- ^y2h+-2 " y2h^ + y0, 

h=0 

I 
I 

we see that the sequence {yp^.} would then have one limit point. This 

proves the theorem (3.11). 
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However, the author sees no way to prove (5.12) nor the conjecture. 

The following theorem proves that, whether R has one point or an 

infinite number, ^OO "• 0 no faster than linearly. 

(5.17)  Theorem. Fix s with 1 < s < n - 1 .  Given any A in the 

form (2.7). Let x„ = (5^ , ..., r0^)T be any vector in E  with         0 1 '  'n •*• n     

m    nonzero components.    Then in the optimum s-gradient method    f (x ) 

converges to   0    in the following ways: 

(i)    If   m < s,    then   x    = 0, f(x )  = 0,    and the Iteration termi- 

nat9i in one si 

(ii)     If   s + 1 < m,     then the convergence of    f(x )    to   0    is 

asymptotically linear,   in the sense that there exist constants    c.,  C- 

depending on   x ,    with 

f(x2k+2) 

(3.18) 0 < c1 < f/x    \       < c2 < 1, for all   k . 

Proof.    We may ignore any zero components of    xn,     as they remain 

zero throughout the  iteration.    We are thus minimizing    f(x)    in    E    . 
m 

Proof of (i): If m < s,  then the subspace L  defined in Sec. 2 "^ s 

is    E     .    Hence    xn   = 0    and    f(xn) = 0,    the minimum of    f(x)    in   E    . m 1 ^ r        ' v ' m 

Proof of (ii):    That 

follows from the chain of inequalities  (2.13).    We have to prove the 

inequalities involving    c.   . 
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Given   x-    with at least    s + 1    nonzero components.    By theorem 

(5.1)  all other vectors   x.    have at least    E + 1   nonzero components, 

so that no    x.   = 0  .    By theorem (3.8),   the normalized gradient vectors 

y       have as a  limit set a continuum    R  .    For each point    r    in    R,    we 

have    T r = r  .    Suppose a position vector    x    were such that r = Ax/||Ax|| € R . 

That is,    x    would be  in the direction of    A~ r  .    Let    x"    be  the result 

of two steps of the optimum s-gradient method applied to    x  .    Since 
2 

T r = r,    we see that    x"   would be in the same direction as    x  .    Hence 

(3.19) x"  = 7X    and so    f(x")  = 72f(x), 

for some    7   with    0 < 7 = 7(r) < 1  . 

I.e.,   for each point    r    of    R    there  is a positive real number 

7(r)    such that whenever the gradient of a vector   x    lies in the direction 

of   r,    then  (5.19)   holds. 

Let    C    be the minimum of    7(r)     for    r € R .    Since    R    is compact, 

the minimum is assumed end   C > 0  .    Hence 

(5.20) o<C2<^ 

for all    x    such that    Ax/||Ax|| € R  . 

Now the ratio    f(x")/f(x)     is a continuous function of    x   .    Let 

N(R) c Z    be  such a  neighborhood of    R    that 

(3.a) ic^fgl 
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for all    x    with    Ax/||Ax|l    in   N(R)   .    Consider the sequence    C^p. )   . 

Let    z2k = Ax2k,    and let    y2k = z2k/llz2j'   *    By theorem (5 «8)»  the 

{y0, }    have    R    as a limit set.    Hence there is a    K   such that for 

k > K,    all    y        lie  in    N(R)   .    By (3.2l)  then for   k>K   we have 
'2k 

hr2 c I1W 

Letting    c,   = ^C      completes the proof of the theorem. 

2 
Actually we could have taken    c.   = C    - e,     for any    e > 0 

(5.22)    Corollary.    With the hypotheses of theorem (5.17)>  there exist 

constants    d.,  d      with 

^Vi) 0 < d, <    „,\    < d0 < 1,                   for all   k . 1 -    f (xk)    -    2   

Proof. The corollary follows from theorem (j-l?), the inequalities 

(2.13), and the fact that f(xk) ^0, as k ^ 

(5.25) Theorem . Fix s > 1 . Let x  be any vector such that x 

is parallel to xn in the optimum s-gradient method. In other words, 

zo/llznll — — i^- set F(A) °L {^•5)*  where z = Ax . Then 

f(xk+l
)    2 

(3'2k) f(x)       =: C        (k =C'  1' 2' •*• )f 

K 

2 
where c  depends on A and on x . 

Remark. The import of this theorem is that, although the x. 
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alternate between two fixed directions,  as   k-• ",    the ratio  (3.2U) is 

constant for all    k,    and does not alternate. 

Proof of (3.25).    We first note  from Corollary (2.23)  tnat the 

theorem is true for   s = 1,    and that  (2.22) gives a formula for   c     in 

terras of the two nonzero components    C^  !L   of   z    . 

For any fixed   s > 1,  let    it    be the 2-space spanned by   x.    and 

1 T x.   .    Let    f (x)    be the restriction of    f(x) = fx Ax    to the subspace 

n  .    Then the vectors   x., x.., Xp,   ...    can be shown by a geometrical 

argument to be the successive iterates of the optimum 1-gradient method 

for finding the minimum of    f (x)     in    n,    starting with    xn  .    Then 

(3.2l|)  for    s = 1    states that 

2 
for some constant    c      depending on the eigenvalues of    f    .    Since 

f  (x)   = f(x)     in    n,    this proves the theorem for    s  . 

Presumably theorem (3.23)  could somehow be proved from theorem 

(2.l8),  just as the case    s = 1    follows from (2.22). 

Corollary (3.22)  could also be proved from theorem (3.23). 
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k.    Nature of the Asymptotic Directions. 

We should like to characterize as well as we can the possible limiting 

vectors      r € R       of the (normalized)  gradient vectors    y«.     of theorem 

(3.8).    Since    T r = r,    for    r    in    R,    we have 

O+.l) cr = Ps(A; Tr)   Ps(A;  r) 

= *2sW r. 

where c > 0 is a constant and Q,^ (t) is the product of the two poly- 

T 
nomials P (t; Tr) and P (t; r) . Letting r = (p., ..., p ) , we 

S S X II 
1 

have 

ik.2) cp± =  ^(X.) Pi        (i = 1, -.., n) . 

Recall from p. kk  of [12] that P (t; Tr) = ts + ... and P (t; r) 

s 
= t + ... are polynomials of degree s, each with s distinct real 

2s 
zeros in the open interval (X,., X ) . Hence Q^ (t) = t  + ...  is a 

polynomial of degree 2s with 2s real zeros in the interval (X,, X ), 

counting double zeros twice, if any. Now c > 0 in (^-.2), which implies 

that for each i 

(1+.3)   ^g^i) = c > 0 or p. = 0        (i = 1, ..., n) . 

Since Qp (t) vanishes for some t in (X , X ), the equation Q^ (t) 

= c > 0 can have 2, 3, k,   ...,    or 2s distinct real roots, which we 

call |i. (j = 1, ..., m), and number so that 
J 
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»1<*2< ...<^m 

(Here we count a multiple root of Qp (t) = c only once.) Thus 

W^ =c (j = 1, ..., m) . 

By (^.5) each \. for which p. ^ 0 is one of the |i. 

(k.k)    Definition. Given xn . Let R be the set of limiting points 

of the normalized gradients (ypi, : k = 0, 1, ...) of the optimum 
f 

s-gradient method starting from    x    .    For any vector    r = (p ,   ...,  p  ) 

in    R,     let    S   be the set of    \.     for which    p.  ^ 0  •    Any such set is 

called an asymptotic spectrum of the optimum s-gradient method for the 

given    x    .    Any    r    in    R    is called an asymptotic gradient vector of 

tne same iteration. 

Note that   R    depends on    A    and   xn,    and we occocionally write 

R(x ,  A)     to make the dependence explicit.    Note that    S    is a property 

of    r    only,  and only indirectly of   x    . 

(U.5)    Definition.    For a given    A,    we define the  invariant set    F(A) 

of the optimum s-gradient method to be the set of unit vectors    r    such 

thPt    T r = r . 

We have shown in theorem (5'8) that, for any xn, R(xn, A) c F(A) . 

It is never true that R(x_, A) = F(A) . However, it is true that 0 

F(A) 
xn € E 0   n 

R(x_, A) . 
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For, if r € F(A), then T r = r,  so that r = R(r, A) . 

(1+.6) Theorem. Given x0 = ii[0\   ..., l^f   with 5^ ^0 (i = 1, 

..., n) . Assume s < n . Then both eigenvalues \,  and \      belong 

to all asymptotic spectra S of the optimum s-gradient method starting 

with x0 . 

Proof. Assume that X (q < n)  is the largest eigenvalue in the 

asymptotic spectrum S corresponding to an asymptotic vector r of 

R(x , A) . The zeros of each P (t; z ) (k = 0, 1, ... )  lie in the 
U S      K 

open interval (X., X ) . Hence P (X ; z, W 0 for all k . Hence r x 1' n s n  k r 

T]^   ^0 for all k, where the TK    are the components of 

y2k = Z2^Z2^   • 

Let    T    be the largest zero of    P (t; Tr)  P (t;  r)   .    Since the 
s s 

zeros of both    P (t; Tr)    and    P (t;  r)    lie in the open interval    {K,  \ ), 
S S -fc.   tj 

we see that P (t; Tr) P (tj r)/»,  as t/*, for t > T . Hence 

c2 = P (X ; Tr) P (\ ; r) < P (^ ; Tr) P (X ; r) 
s q     s q      s n     s n 

But then, by continuity, 

Ps(V ^J  Ps(\' Z
2k^

OPs(V Z2k+l) 
Ps(V Z2^ 

for some    a < 1    and all    k > K .    Since all   Tp        f 0,    and since 

n      dP    ^ 0,    for a certain subsequence    k.,    this means that 

IV    J I "* •*     as    j ~* • •    This is  impossible,  since all    y lie 
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on the unit sphere. Hence q = n, and \  is in the asymptotic spectrum 

The proof that K     is in S is analogous, 

(U.?) Theorem. Given x  with 5-  f 0 (i = 1, ••., n); assume that 

s > n . Let m be the number of eigenvalues in any asymptotic spectrum 

S of the optimum s-gradient method. Then 

s + 1 < m < 2s . 

Proof. Let r 6 R be an asymptotic gradient vector corresponding 

to a given S . As shown after (^.j), the asymptotic spectrum S is a 

subset of the set of t for which P (t; Tr) P (t; r) = c, and the 
s       s 

number of such t is between 2 and 2s . 

However, if m < s, one step of the optimum gradient method would 

carry r into 6,    and so r could not belong to R . Hence 

s + 1 < m < 2s . 

(4.8) Theorem. Suppose s < n . Let x0 = (I  , ..., §  )  be any 

vector in E  with exactly s + 1 nonzero components %.       . Then 

xn, x_, x, , ... are all collinear vectors. That is, the normalized 

gradient vector y = Ax0/||Ax || is in the invariant set F(A) of {h.5) 

Proof. Let z. = Ax- . It will suffice to prove that z = c z , 

for some positive constant cn . Without loss of generality we may 

assume that n = s + 1,  since the components for which §.  =0 remain 

zero. 
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By (2.2) 

and 7 ,   ...,  7      are so chosen that    z,     is orthogonal to    z , Az ,   ..., 

s-1 A      z     .    Because    s + 1    components of    z      are nonzero,   the    s    vectors 

s-1 r 
z ,  Azn,   ..., A      z      are linearly independent.    Hence the set    lz ,  Az^, 

...,  A " z ]    forms a basis for the subspace of    E    ..     orthogonal to    z..   . 

Next,    z      is formed    ai    a    linear combination of    z... Az.,   .... 
2 11'' 

s s-1 
A z,    which is orthogonal to    z ,  Az^   ..., A      z.   .    Since    z      is 

orthogonal to    z.,    it is expressible in terms of the basis    z ,   ..., 

A      z0  : 

{k.10) z2 = c0z0 + c1AZo +  ... + C^/^ZQ   . 

We shall prove that    c.   = c_ = ...  = c    ,   = 0  . ^ 12 s-1 

Take the inner product of (^.10) with   Az. 

(^11) z1
TAZ2 = c0z1

TAz0 + c1z1
TA2z0 +  ... + osm2z^kS'lZ0 

+ c
s-i

zi A zo • 

T T 
But    z,  Azp = Zp Az,   = 0    because    z»    is orthogonal to    Az,   .    And 

z,  Azn » z- A z_ = ...  = z.  A      zn = 0,    because    z      is orthogonal to 

Azn,  A zn,   ..., A ' z    .    And    z.  A z    ^ 0,    since otherwise by (^.ll) 

z,    would be    0  .    It then follows from (4.1l)  that    c    n   = 0 . 
1 v s-1 
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■• 

p 
Next, taking the inner product of (^.10) with A z, and using the 

same argument and the fact that c 1 = 0, we show that c _p «= o . 

2       s-1 
After taking the inner product of (^.lO) with Az.., A z , ..., A ?.,, 

we will have proved that c   <=...>= c0 = c.= 0 . Then, from (U.io), 
s"l c        J- 

Zp = c z    .    That    cn > 0    follows from the proof of (5.5)   .    This com- 

pletes the proof of theorem (^.8). 

Theorem (^.8)   implies that any    s +  1    eigenvalues of   A    can be  in 

the asymptotic spectrum for some start    x     .    Moreover,  any vector    r 

with exactly    s + 1    nonzero components can be an asymptotic gradient 

vector of an iteration.    This extends to    s > 2    the known fact for the 

ordinary optimum 1-gradient method in 2 dimensions that any initial 

gradient direction is  repeated at every other step of the iteration. 

See the end of Sec. 2 above,  or p. 211+ of Ostrowski [9]. 

That for all s the period of the iteration in theorems (5.8) and 

(1+.8) is 2, and not higher than 2, was a surprising fact to the author. 

However,  the experiments of Khabaza [8]  for    s = 5    suggest the period 2. 

For    s = 1    we have    s + 1 = 2s = 2,     and then by theorem (^.T)  all 

the vectors  invariant under two steps of the optimum 1-gradient method 

are of the type covered in theorem (^.8).    From this we can now show for 

s = 1    that the  limiting set    R   of theorem (5.8)   is actually a  single 

point.    The following is a modification of Akaike's proof in [1]  of the 

Forsythe-Motzkin conjecture [7]. 

(1+.12)    Theorem  (Akaike).    Let    s = 1  .    Let    y0 = (n}    1   • • •>  n^    ) 

be any vector in    £     with   T) .      ^ 0    (i = 1,   ...,  n)   .    Then the sequence 
"■■■      ^———   1        ■       3 '"  ■—■— 

/ {y  : k = 0, 1, ...) of normalized gradients converges to a_ single point 

r whose spectrum is (^ , ^ 1 • Moreover, T r = r . 

;. 
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Proof.    By theorem (5 «8)  the set of unit vectors    {y3.   :  k = 0,   1,   ...   ) 

has a continuum   R    as a limit set.    By theorem {h .j),  for any    r € R    the 

corresponding spectrum    S    of    r    has only 2 eigenvalues in it  (for    s + 1 

= 2s = 2 ).    Now by theorem (^.6)  the two eigenvalues in   S    must be    K 

T 
and    ^    .    Let r    be any point of   R;    let    r = (p,,  0,   ..., 0,  p )   , 

2        2 2 2 
with   p, + p    = 1 .    Then    P, (t; r)  = t - n,    where    \i = ^p. + ^ p    . 

Hence    P (A;  r)  r =  {{\   - ^p,, 0,   ...,  0,   (\    - ^)p)T . i ii n n 

By the proof of theorem (3.8), 

L = k
lt\ <P(wk)  = <p(r)  = HP^A; r)  r|l2, since    |lr||2 = 1 

= (\n   - u.)  p,  +  (X    - \i,)    p , 

or 

(^.15) L = ^n " V2 pl pn 

Now L is a number determined by the iteration. \n and X  are In 
2        2 2        2 

given eigenvalues,  and    p..  + p    = 1 .    Hence the pair    p..,    p      are 

dcbermined by (k.lj)),  up to an interchange at most.    Hence the set    R 

can have at most eight vectors in it,   if all permutations of signs are 

considered.    But then,   since    R    is a continuum,   it must consist of a 

single point, which we call    r .    Then    y..   "• r,    as    k -• • .    This 

proves theorem {k.12). 

Actually,   if    r =  {p^   ...,  pn)  ,    then    Tr =  (pn,   ...,  -p^   , 

where all components    p.   = 0    for    1 < i < n  .    Then    r = lim y_.     and 

Tr = lim ypi,+1*    as    k -•  .    So,  the directions of the gradient vectors 

z.     alternately approach the directions of    r    and    Tr,    as    k -• •  . 
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The reason we cannot extend our proof of t'ieorem (^.12) to s > 1 

is that the equation analogous to C+.lj) involves between s + 1 and 

2s unknown components of r, and we do not see how to limit r to a 

finite number of vectors. Even for s = 2, theorem (^.8) shows that 

2 
all vectors r with 3 nonzero components are invariant under T 

Prescribing the vector r to have unit length and prescribing the value 

of L reduce the number of free parameters in r to 1 . But, so far 

as the author can see, there remain •  possible limiting vectors r 

in R . 

Moreover, for an even number a > 1, there are asymptotic spectra 

containing more than s + 1 eigenvalues, as will now be demonstrated. 

We shall consider only spectra with symmetry about a midpoint. We dc 

not know whether there are asymptotic spectra with more than s + 1 

eigenvalues without such a symmetry. 

We shall first examine possible asymptotic spectra with an even 

number 2q of eigenvalues. Let the eigenvalues in S be a - p. , 

a - \i      ,   ..., a - M.1, a + ui1, ..., a + p.  , a + p. , where 0 < a - ^ 

and 0 < u, < ... < u  .  Let us consider unit vectors r with symmetric 1     q 
components p , ..., p , p , ..., p ,  corresponding to the respective 

points of the spectrum. 

Because of the symmetry about the point t = a,  the orthogonal 
P 

polynomials P^At',  r), P   (t; r) associated with S and the [p.} 

satisfy the conditions 

(h.lk) P2k(t; r) =gk((t - a)2). 

33 



where g.  is a monic polyriomial of degree k; 

(^.15) P2k+1(t; r) = (t - a) hk((t - a)2), 

where h,  is a monic polynomial of degree k . 

By symmetry, the even and odd polynomials P^C^j r) are automatically 

orthogonal. By O+.l^) orthogonality of the P (t; r) among themselves 

can be expressed in the form 

(4.16)      f g^f)  gk(^) p2 = 0     (j, k = 0, 1, ...; j ^ .:) . 

Thus the    gw(t)    are themselves orthogonal polynomials over the set 

? 2 2 2« 
\j. ,   ...,  M>     with the weight factors    p ,   ...,   p     .    Moreover,   gi,^)  = 

k 2 
(-l)    g, (a    - t)    are monic orthogonal polynomials over the transformed 

se 
P 2 P P 2 2 

t    § = {a    - \i. ,   ...,  a    -M'-i)    with the same weights    p,,   ...,  p 

Note that    lgk(0)|  =  |P2k(0; r) |     and that     ^(a2 - ^2) |  =  |P2k(a + ^i  r) | 

for    i = I»   •••><!•    Hence    I g-Ct)/^ (o) |     has the same constant value 

over the set    S    that  IPok^*?  r)/P2ir(0'  r)'   has over the set   S  ' 

By (4.15)  the orthogonality of the    Ppk+i     among themselves can be 

expressed as 

(4.17)  t   h>i) \^ 4 4=° 
i=l d 

(j, k = 0, 1, ...; j ^ k) 

Thus the ü. (t) = (-l) n (a - t) are monic orthogonal polynomials over 

2    2 
the  set    ä = {a    -^,...,a    - \X-.]    with the different weights    p...   p.,   ..., 

2 2 
^ p^ . Note that |hk(o)| = |hk(a )| = |P2k+1(0; r)|/a, and that 
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\\i*2 .»l)\  -  |hk(^)|   ^iP^Cam.jr)!/,.   . 

Thuf -jonstancy cf  IPo^.^t;  r) |     over    S    does not  imply constancy of 

fii,(t)|     over    S   .     The even and odd polynomials transform differently. 

By means of these orthogonal polynomials    g      we can reduce the 

problem of the  invariance of the    r    under two steps of the optimum 

2s-gradient method over    S    to the problem of the  invariance of an 

optimum s-gradient method over    S    in a  space of half the dimension. 

To be precise,   the above relations  imply the following result, 

which we do not prove. 

(U.l8)     Theorem.     If    s    is even and    s + 1 < 2q < 2s,     then the vector 

T 
r = (p ,   ...,   p ,   p.,   ...,   p )       (with no    p.   = 0 )     is  in the  invariant 

q 1       i q i 

set  (^.5)   foi  the optimum s-gradient method  for the diagonal matrix of 

2q    nonzero elements 

diag(a   - My   ...,   a   - jj^,   a + M^,   ...,   a + M^) 

T 
if and only if the vector    r =  (p,,   ...,  p )       (with no    p.   = 0 )    _i£ 

in the  invariant set for the optimum    (s/2)-gradient method for the 

diagonal matrix of    q    nonzero elements 

p        p p p 
diag(a    + ^   ...,   a    + ^q) 

Moreover, when iterations exist with these  invariante properties,   if 

z-   -■ r/i|r||     and    z     = r/ll^ll»    then    ||zj|   = ||zJ|     for    k = 0,   1,   2,   ..., 

where    z      and    z,      are the gradient vectors of the respective iterations. 



We do not know a comparable theorem for odd integers    s  . 

As an application of theorem (U.l8), we can show that for any    s 

of the form    s = 2P    (p - 0,   1,  2,   ...).     Lnere exist vectors with    2s 

nonzero components that arp  iu the  invariant set of some optimum s-gradi- 

ent method.    For    p = 0    this  is theorem (U.12),   and is true for any 

2 2      2        2 
diagonal matrix of two positive elements    diag(a    + n..,  a   + p.?)    and 

T 
any vector    r = (p,,  pp)     .    Application of the first sentence of (^.18) 

2        2      2        2      2        2 
leads to    s = 2   with any matrix of form   diag(b    + v..,  b   + v.,  b    + v,, 

2 2 2 2        2 2        2 b2 + V    Where    b    + v
1  = a  " ^2'     b    + v2  = a   " ^l'     b    + v5  = a + t^x» 

b    + v,   = a + |jip,    and corresponding vector    c(p ,   p ,   p..,  pp)     .    Another 

application of C'+.lS)  leads to    s = ^    with the matrix 

diag(b - v^,   ..., b - v:L, b + v;L,   ..., b + v^) 

T 
and corresponding vector c'{p^,  P-^,  p^  pg, p^,   p ,  p^  p )  . It 

p 
is clear th?.t the process may be continued to s = 2  for any p . 

Note from theorem ('i-.T) that 2s is the tnnximal nmber of nonzero 

components in any vector in the invariant set for an optimum s-gradient 

method. Our above example illustrates the rraximal case. 

We next consider symmetric asymptotic spectra with an odd number 

2q + 1 of eigenvalues a - \i> ,   ..., a -H-,» a> a + p..., ..., a + \i.      and 

a corresponding symmetric vector 

r 

(p ,  .., P^ Po, p^ ..., p ) 

invariant under T" . Then again the orthogonal polynomials take the 
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forms ih.lk)  and (U.15). The odd polynomials ere  still defined by the 

condition (4.17), but the condition (^.16) must be replaced by 

o2 = 0 n 
ik.19) 2 | g^)   gk(^) p2 + gj(ü) gk(o) 

(j, k = 0, 1, ...; j ^ k) . 

The analog of theorem (4.18) is now stated, but not proved: 

(4.20) Theorem. If s is even and s + 1 < 2q + 1 < 2s, then the 

vector r = (p , ..., p., p , p , ..., p )  (with no p. = 0 )  is in 

the invariant set (4.5) for the optimum s-gradient method for the diag- 

onal -natrix of 2q + 1 nonzero elements 

diag(a - u , ..., a - p^, a, a + py ..., a + u ) 

if and only if the vector r = (p //2, p , ..., p )  (with no p. = 0 ) 

is in the invariant set for the optimum (s/2)-gradient method for the 

diagonal matrix of q + 1 elements 

diag(a , a + ^   ••., a + p, ) 

Moreover,  when iterations exist with these invariance properties,   if 

z0 = r/||r0ll     and    z0 = r/llr||,     then WzJ  = \\zj    for    k = 0,   1,  2,   ..., 

where    z,     and    z      are the gradient vectors of the respective  iterations. 

If    s    _is_ odd,  then the set of 2q + 1    eigenvalues    {a  - p, ,   ..., 

a  -^i>   a,   a+^,   ...,   a+p}     can never be the asymptotic spectrum 

of an optimum s-gradient  iteration. 
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The first two sentences are strict analogs of theorem (4.18). The 

third is true because P0, ..(a; r) - 0 for all k . 
2k+l 

The signs of the p. are of no importance in theorems (^.18) and 

{k.20),  and any p, could be left alone or replaced by -p.  independently 

at any place it is mentioned. 
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5»    Singular and Derogatory Quadratic Forms; Zero Components. 

Two restrictions placed on    A    above are really irrelevant--that    A 

be    regular and nonderogatory.     If    A    is singular,  then for some    p > 1, 

we have    K   -  ...  = \    =ü<\..<...<\    .    Then  it follows from 
1 p p+1 n 

(2.12)   that 

e(k+l)   = 5(k)^ for    !< !< p.  k =o,   1,   2, 

(k) 
while all components    5.      -• 0,     as    k -* •,    for    p+l<i<n.    On 

the other hand    f(x)  =ibcAx=2]\.  |.  =   2]     \ I-   •    Thus    f(x)     is 
i=l      i=p+l 

minimized for all vectors in the subspace N where I, = • • • * I =0, 1       p 

and the gradient methods proceed from x  to the closest point x^ 

of N, with all x, - x.. and all gradients z,  located in the ortho- ' k   •        0        k 

gonal compleraant of N . 

If A is derogatory, it has multiple eigenvalues but a complete 

set of eigenvectors (because A is symmetric) . Suppose, for example, 

that 0 < \   =V = ••• = ^ <^ .-, < ... < ^ ,  and suppose that 12        r   r+1        n' 

x _ (|(o)     .(o)  (0)     (OKT 

Now the orthogonal basis of eigenvectors belonging to k ,   ,.,f  k      is 

not uniquely defined. Our preceding analysis required at various places 

(e.g., in the proof of (^.8) that the k.    be distinct for each nonzero 

component |. , but zero components 5.   were ignored. If any of 

5^ , ..., i are nonzero, make an orthogonal transformation of the 

eigenvector basis so that xn takes the form 
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xo 
_ f(f(0)2+   + «(o)

2^ o    o s(0)    t(0^T 

Then di'op the new zero components t,  ,   ...,  |  entirely, and effectively 

reduce A to a nonderogatory matrix A of order n - r + 1 . 

Thus, in effect, only the set and number of distinct nonzero eigen- 

values of A have a real relevance to the gradient methods for quadratic 

T 
functions ^x Ax . 

Moreover, zero components of any x  should be ignored, and the 
K 

order of A reduced by unity for each zero component |,   that occurs 

at any stage of the iteration. 

If fewer then s + 1 components of any x.  are nonzero, then 

x, . n = 6 and the iteration terminates at once. Hence we have always k+1 

insisted that at least    s + 1    components of    x     be nonzero.    Even so, 

one may ask,  might not enough    P (^. ;  z, )    be "accidentally" zero,  so 
S        -1- il 

that for some later    x      fewer than    s + 1    components are nonzero? 

The answer is negative,  as the following theorem shows: 

(k) 
(5.1)    Theorem.    Assume    s + 1 < n  .    Assume    |.      ^ 0    for    1=1,   ..., 

n  .    Then at least    s + 1    components    |. ^ 0  . 

Proof.    By (2.12),   '|r+1^  = P (\.; z )   %r\    up to a multiplicative 
1 S       1 K 1 

constant that does not matter, where P (t; z, ) is the orthogonal poly- 
S K ^ 

nomial of degree    s    over the set    {\>   ••->  ^ }    with weights   k.  'I   . 

We shall prove that there exist    s + 1    eigenvalues out of the    V   : 

(5.2) X[<'K2<     " < K+1 ' 

\ 



such that    P (\^; z )  P {*>[+■,', ZJ < 0    for    i = 1|   •••,  s .    A fortiori, 

P (\ >  zt)  ^ 0    for    i = 1,   2,   ...,  s + 1,    and the theorem will have 
S  1   K 

been proved. 

If the above sign-alternation property is false, then let q < s 

be the largest integer such that we can find {\.} with 

(5.5)    Ps(^; zk) ps(^+1; ^ <0 for i = 1, ..., q - 1 . 

(Clearly some q > 2 exists, or else P (V ; z, ) would always be of _ ^ S  1   K 

one sign and hence P  could not be orthogonal to P = 1 . Then s u 

pick    ^   ..., n wi ith 

K'l<H<X2<^2< '"<X'o.l<\-l<K' 

so that,   if    Q(t)   = (t - ^   ...   (t - u    1),     then    Ps(V; z^)  Q^)  > 0 

for all    i = 1,   ...,  n  .     (We omit details of the construction.)    Then 

(P (t; z ),  Q(t)>  =   £   P (\ ; zk) Q(\i) 
i=l «! 

w12 
> o, 

so that P  and Q aie not orthogonal. But, since Q is of degree 
s 

q-l<s-l.  P  must be orthogonal to Q . This contradiction T. _ /      s 

completes the proof of theorem (5.1). 

hi 
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